XII - PHYSICS ELECTROSTATICS (1-B)
> PROPERTIES OF ELECTRIC LINES OF FORCE :
Q.26: Mention any two properties of electric lines of force.
Q.27: In given fig. , at which point electric field is maximum? Why?
∇ Q.28: No two electric field lines can intersect each other. Why?

『Q.29: An electrostatic field lines cannot be discontinuous. Why? CBSE
Ans: Because electric field is continuous in space and exists at all points in space. If a line of force had a sudden break, it would indicate the absence of electric field in that region. \therefore an electric field line cannot have sudden breaks.
Q.30: Why do the electrostatic field lines not form closed loops?

CBSE - AI
Q.31: A solid metallic sphere is placed in a uniform electric field. HOTS Which of the lines A, B , C and D shows the correct path and why?

∇ Q.32: A small test charge is released at a point in an electrostatic field configuration. Will it travel along the field line passing through that point?
Ans: Not necessarily, because the field lines in general gives the direction of acceleration and not that of velocity.
If the field lines is a straight line, only then the particle will travel along the field line.

> ELECTRIC DIPOLE :

Q.33: What is the total charge on an electric dipole.

च(A)Q.34: Which among the curves shown in figure cannot represent electrostatic field lines ?

(c)

(d)

(e)

> DIPOLE MOMENT :

Q.35: Define the term electric dipole moment.

CBSE
Q.36: What is the SI unit of electric dipole moment?

CBSE
Q.37: What is the direction of electric dipole moment vector?
Q.38: Two charges, one $+5 \mu \mathrm{C}$ and $-5 \mu \mathrm{C}$ are placed 4 mm apart. Calculate the dipole moment and give its direction.
[Ans: $2 \times 10^{-8} \mathbf{C m}$]
Q.39: An electric dipole consisting of a pair of equal and opposite charges each of magnitude $5 \mu \mathrm{C}$ has dipole moment equal to $5.0 \times 10^{-7} \mathbf{C m}$. Find the length of the dipole. [Ans: 0.1 m]
∇ Q.40: Two charges each of $2.5 \times 10^{-7} \mathrm{C}$ but opposite in sign form a system. These charges are located at points $A(0,0,-15) \mathrm{cm}$ and $B(0,0,+15) \mathrm{cm}$ respectively. What is the total charge and electric dipole moment of the system ? [Ans: Total charge on the system $=\mathbf{0} ; \overrightarrow{\mathrm{p}}=7.5 \times 10^{-8} \mathbf{C m}$]

> ELECTRIC FIELD INTENSITY ON AXIAL LINE OF ELECTRIC DIPOLE :

Q.41: How does the electric field strength change with distance ' r ' from a short dipole ?
Q.42: What is the direction of electric field intensity due to an electric dipole at a point on its axial line ?

HOTS

Q.43: The distance of the field point on the axis of a small dipole is doubled. By what factor will the electric field, due to the dipole change?

HOTS
Q.44: Derive an expression for the electric field intensity at any point along the axial line of an electric dipole.

CBSE
Q.45: Two point charges $+3 \mu \mathrm{C}$ and $-3 \mu \mathrm{C}$ are located 20 cm apart in vacuum. Find the $\mathrm{E} . \mathrm{F}$ at a point on the axis 20 cm away from the centre of the dipole. [Ans: $2.4 \times 10^{5} \mathrm{~N} / \mathrm{C}$]

VQ.46: Two point charges $+3 \mu \mathrm{C}$ and $-3 \mu \mathrm{C}$ are located 20 cm apart in air.
(i) Calculate the electric field at the mid - point O of the line $A B$ joining the two charges .
(ii) If a negative charge of $1.5 \times 10^{-9} \mathbf{C}$ is placed at that point, find the force experienced by this charge. [Ans: (i) $5.4 \times 10^{6} \mathrm{~N} / \mathrm{C}$ (ii) $8.1 \times 10^{-3} \mathrm{~N}$]

> ELECTRIC FIELD INTENSITY ON EQUITORIAL LINE OF ELECTRIC DIPOLE : 1 - MARKS QUESTION

Q.47: Electric field intensity due to electric dipole at a point of distance ' r ' from its centre varies as \qquad
Q.48: How are the electric field intensities of a short dipole on axial and equatorial lines related to each Other.
Q.49: What is the direction of electric field intensity due to an electric dipole at a point on its equatorial line?

HOTS
Q.50: At what points, is the electric dipole field intensity parallel to the line joining the charge ?
Q.51: The distance of the field point, on the equatorial plane of a small electric dipole is halved. By what factor does the electric field due to the dipole change?

