2 - MARKS QUESTION

Q.52: Differentiate between electric field intensity due to a single point charge and electric field due to a dipole.
Q.53: The electric field due to a small dipole at a distance ' r ' from its centre on axial line is \mathbf{E}. At what distance, an equal electric field will be obtained in its equatorial position ?[Ans: $\frac{r_{1}}{\sqrt[3]{2}}$] HOTS
Q.54: Calculate the field due to an electric dipole of length 10 cm and consisting of charges $\pm 100 \mu \mathrm{C}$ at a point 12 cm from each charge.
[Ans: 4. $09 \times 10^{8} \mathrm{~N} / \mathrm{C}$]

3 - MARKS QUESTION

Q.55: Calculate the electrostatic field intensity at a point on the equatorial line of a dipole. CBSE
Q.56: Show mathematically that the electric field intensity due to a short dipole at a distance ' d ' along its axis is twice the intensity at the same distance along the equatorial line.
Q.57: Three point charges, 1 pC each, are kept at the vertices of an equilateral triangle of side 10 cm . Find the net electric field at the centroid of triangle. CBSE - 2024
$\nabla(S) Q .58:$ Two point charges q_{1} and q_{2} of magnitudes $+10^{8} \mathbf{C}$ and $-10^{8} \mathrm{C}$ respectively are placed 0.1 m apart. Calculate the electric field at point B, C and A.

$\nabla(S) Q .59: T w o ~ c h a r g e s ~ \pm 10 \mu C$ are placed 5.0 mm apart. Determine the electric field at (a) a point P on the axis of the dipole 15 cm away from its centre O on the side of the positive charge, as shown in figure (a), and (b) a point $Q, 15 \mathrm{~cm}$ away from O on a line passing through O and normal to the axis of the dipole, as shown in figure (b).

$$
\text { [Ans: (a) } 2.6 \times 10^{5} \mathrm{~N} / \mathbf{C} \text { (b) } 1.33 \times 10^{5} \mathrm{~N} / \mathbf{C} \text {] }
$$

> DIPOLE IN A UNIFORM ELECTRIC FIELD :

Q.60: Is torque a vector quantity?
Q.61: What is the net force on an electric dipole placed in a uniform electric field?
Q.62: What orientation of an electric dipole in a uniform electric field corresponds to its stable
equilibrium?
Q.63: When is an electric dipole in unstable equilibrium in an electric field?
Q.64: Does a dipole experienced a force when placed in the non - uniform electric field ?
Q.65: An electric dipole is placed in a uniform electric field. At what position, will it experience a maximum torque?
Q.66: Write the expression for the torque $\vec{\tau}$ experienced by the dipole in uniform electric field $\overrightarrow{\mathrm{E}}$, and identify two pairs of perpendicular vectors in the expression.
Q.67: Show diagrammatically the orientation of the dipole in the field for which the torque is :
(i) maximum
(ii) Half the maximum value
(iii) Zero.
Q.68: An electric dipole is placed at an angle θ from the direction of a uniform electric field \vec{E}. What force and torque is acting on the dipole?
$\mathbf{\nabla}$.69: An electric dipole with dipole moment $4 \times 10^{-9} \mathbf{C m}$ is aligned at 30^{0} with the direction of a uniform electric field of magnitude $5 \times 10^{4} \mathrm{~N} / \mathrm{C}$. calculate the magnitude of the torque acting on the dipole.
[Ans: $10^{-4} \mathbf{N m}$]
Q.70: An electric dipole moment $3 \times 10^{-8} \mathrm{Cm}$ placed with its axis making an angle of 30^{0} with a uniform electric field, experience a torque of $1.2 \times 10^{3} \mathrm{Nm}$. Calculate the magnitude of electric field.
[Ans: $\mathbf{8} \times 10^{10} \mathbf{N} / \mathbf{m}$]
Q.71: An electric dipole is held at an angle ' θ ' in a uniform external electric field ' E '. Will there be any
(i) net translating force

CBSE
(ii) torque acting on it? specify its direction. Hence define dipole moment.
(iii) Explain what happens to the dipole on being released.
Q.72: Two small identical electrical dipoles $A B$ and $C D$, each of dipole moment ' \mathbf{p} ' are kept at an angle of 120° as shown in the figure. What is the resultant dipole moment of this combination? If this system is subjected to electric field (\vec{E}) directed along $+X$ direction, what will be the magnitude and direction of the torque acting on this? CBSE [Ans: $\mathrm{p}_{\mathrm{R}}=\mathbf{p} \& \phi=30^{\circ} \tau=\frac{1}{2} \mathbf{p E}$]

> POTENTIAL ENERGY OF DIPOLE IN A UNIFORM ELECㄱ

Q.73: An electric dipole is aligned parallel to the field. Calculate the work done in rotating it through 180°.
[Ans: 2 pE]
CBSE
Q.74: Derive an expression for total work done in rotating an electric dipole through an angle θ in a uniform electric field.
Q.75: An electric dipole of length 10 cm having charges $6 \times 10^{-3} \mathbf{C}$, placed at 60^{0} with respect to a uniform electric field, experience a torque of $6 \sqrt{3} \mathrm{Nm}$. Calculate
(i) magnitude of electric field and
(ii) potential energy of electric dipole.
[Ans: (i) $2 \sqrt{3} \times 10^{-4} \mathrm{~N} / \mathrm{C}$
(ii) - $\mathbf{1 8} \mathrm{J}$]
CBSE - C
Q.76: Calculate the amount of work done in rotating a dipole, of dipole moment $3 \times 10^{-8} \mathrm{~cm}$, from its position of stable equilibrium to the position of unstable equilibrium, in a uniform electric field of intensity $10^{4} \mathrm{~N} / \mathbf{C}$.
[Ans: $6 \times 10^{-4} \mathrm{~J}$]
CBSE - F

